Home
Class 12
MATHS
|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=...

`|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=`

A

`(a-b)(b-c)(c-a)`

B

`(a-b)(b-c)(c-a)(a+b+c)`

C

`(a-b)(b-c)(c-a)abc`

D

`(a-b)(b-c)(c-a)(ab+bc+ca)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D MCQ (LINEAR EQUATIONS)|53 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A MCQ (ALGEBRA OF MATRICES)|135 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

|(1,a,a^(2)+bc),(1,b,b^(2)+ac),(1,c,c^(2)+ab)|=k(a-b),(b-c), (c-a) then k =

If |(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 and vectors (1,a,a^(2)),(1,b,b^(2)) and (1,c,c^(2)) are non coplanar then the product abc=

If barA=(1,a,a^(2)),barB=(1,b,b^(2)),barC=(1,c,c^(2)) are non-coplanar vectors and abs({:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))}:)=0 then abc=

Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

|(1//a,a^(2),bc),(1//b,b^(2),ca),(1//c,c^(2),ab)|=

If bc+ca+ab=18 , and |(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3))|=lambda|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))| the value of lambda is

Show that |{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}| =(a-b)(b-c)(c-a)(ab+bc+ca)

DIPTI PUBLICATION ( AP EAMET)-MATRICES-EXERCISE 1B MCQ (DETERMINANTS)
  1. If |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2))|=k the...

    Text Solution

    |

  2. Prove that |{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a...

    Text Solution

    |

  3. |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(bc,ca,ab)|=

    Text Solution

    |

  5. |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=

    Text Solution

    |

  6. |(1,1,1),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

    Text Solution

    |

  7. |(1,1,1),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3))|=

    Text Solution

    |

  8. |(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

    Text Solution

    |

  9. |(a,b,c),(a-b,b-c,c-a),(b+c,c+a,a+b)|=

    Text Solution

    |

  10. If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(...

    Text Solution

    |

  11. If A(x)=|(1,1,1),((e^(x)+e^(-x))^(2),(pi^(x)+pi^(-x))^(2),2),((e^(x)-e...

    Text Solution

    |

  12. If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(...

    Text Solution

    |

  13. |(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2))|=

    Text Solution

    |

  14. |(a,b+c,a^(2)),(b,c+a,b^(2)),(c,a+b,c^(2))|=

    Text Solution

    |

  15. |((b+c)^(2),a^(2),bc),((c+a)^(2),b^(2),ca),((a+b)^(2),c^(2),ab)|=

    Text Solution

    |

  16. If A=|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b)| the...

    Text Solution

    |

  17. The determinant Delta=|(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=

    Text Solution

    |

  18. If omega is a cube root of unit, then Delta=|(x+1,omega, omega^(2)),(o...

    Text Solution

    |

  19. |(1,1,1),(a,b,c),(a^(2)-bc,b^(2)-ca,c^(2)-ab)|=

    Text Solution

    |

  20. |(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(2))|=0,x!=y!=zimpli...

    Text Solution

    |