Home
Class 12
MATHS
If x,y,z are all positive and are the pt...

If x,y,z are all positive and are the pth, qth and rth terms of a geometric progresion respectively, then the value of the determinant `|(logx,p,1),(logy,q,1),(logz,r,1)|=`

A

`logxyz`

B

`(p-1)(q-1)(r-1)`

C

`pqr`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D MCQ (LINEAR EQUATIONS)|53 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A MCQ (ALGEBRA OF MATRICES)|135 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

If the 4th, 10th and 16th terms of a G.P. are x,y and z respectively, then x,y,z are in

If a,b,c are pth, qth rth terms respectivelyy of a G.P then |(loga, p, 1),(logb, q, 1),(logc, r, 1)|=

Find z so that z+1,z+2,z+3 are consecutive terms of a geometric progression.

If l, m, n are the p^(th), q^(th), r^(th) terms of a G.P which are +ve, then |(log l,p,1),(log m ,q,1),(log n ,r,1)|=

|(x,1,y+z),(y,1,z+x),(z,1,x+y)|=

If p^(th), q^(th), r^(th) terms of a geometric progression are the positive numbers a,b,c respectively, then the angle between the vectors (log a^(2)) I + (log b^(2)) j + (log c^(2))k and (q - r) I + (r - p) j + (p - q) k is

The least value of the product xyz for which the determinant |(x,1,1),(1,y,1),(1,1,z)| is non-negative is

If the p^("th"), q^("th") and r^("th") terms of a G.P. are a, b and c, respectively. Prove that a^(q – r) b^(r-p) c^(P - q) = 1.

If p and q are the greatest values of ""^(2n)C_(r) and ""^(2n-1)C_(r) respectively, then

DIPTI PUBLICATION ( AP EAMET)-MATRICES-EXERCISE 1B MCQ (DETERMINANTS)
  1. A and B are square matrices of order 3xx3, A is on orthogonal matrix a...

    Text Solution

    |

  2. If a="cos"(4pi)/3+I"sin"(4pi)/3,then |(1,1,1),(1,a,a^(2)),(1,a^(2),a)|...

    Text Solution

    |

  3. If x,y,z are all positive and are the pth, qth and rth terms of a geom...

    Text Solution

    |

  4. If a(1),a(2)…… form G.P and a(i)gt0,AAige1, then |(loga(m),loga(m+1),l...

    Text Solution

    |

  5. If a(1),a(2),…………..,a(n), ……… are in G.P and a(i)gt0 for each i then t...

    Text Solution

    |

  6. If a,b,c are pth, qth rth terms respectivelyy of a G.P then |(loga, p,...

    Text Solution

    |

  7. If a,b, c are pth, qt, rth terms of a H.P then |(bc,ca,ab),(p,q,r),(1,...

    Text Solution

    |

  8. If =sin px and y(n) is the nth derivative of y then |(y,y(1),y(2)),(y(...

    Text Solution

    |

  9. If F(alpha)=|(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  10. f(x)=|(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),(x-1)x(x+1))|i...

    Text Solution

    |

  11. Let a,b, c be such that b(a+c)!=0. If |(a,a+1,a-1),(-b,b+1,b-1),(c,c-1...

    Text Solution

    |

  12. If alpha, beta ne 0 and f(n)=a^(n)+beta^(n) and |(3,1+f(1),1+f(2)),(1+...

    Text Solution

    |

  13. |(2bc-a^(2),c^(2),b^(2)),(c^(2),2ca-b^(2),a^(2)),(b^(2),a^(2),2abc-c^(...

    Text Solution

    |

  14. |(0,c,b),(-c,0,a),(b,a,0)|-|(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(a...

    Text Solution

    |

  15. Show that |{:(a,b,c),(b,c,a),(c,a,b):}|^2=|{:(2bc-a^(2),c^(2),b^(2)),(...

    Text Solution

    |

  16. Prove that |{:((1+ax)^(2),(1+ay)^(2),(a+az)^(2)),((1+bx)^(2),(1+by)^(2...

    Text Solution

    |

  17. A factor o |((a-x)^(2),(b-x)^(2),(c-x)^(2)),((a-y)^(2),(b-y)^(2),(c-y)...

    Text Solution

    |

  18. |(cos (alpha+beta),-sin (alpha+beta),cos 2 beta),(sin alpha, cos alpha...

    Text Solution

    |

  19. |(sin alpha, cos alpha, sin (alpha+delta)),(sin beta, cos beta, sin(be...

    Text Solution

    |

  20. |(cos alpha, sin alpha, cos (alpha+beta)),(- sin alpha, cos alpha, -si...

    Text Solution

    |