Home
Class 12
MATHS
2 sec^(2) theta - sec^(4) theta - 2 "cos...

`2 sec^(2) theta - sec^(4) theta - 2 "cosec"^(2) theta + " cosec"^(4) theta =`

A

`cot^(4) theta - tan^(4) theta `

B

`sec^(4) theta - " cosec "^(4) theta `

C

`sin^(4) theta- cos^(4) theta `

D

`sec^(4) theta - cot^(4) theta `

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 B ( COMPOUNDS ANGLES )|106 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 C ( MULTIPLE AND SUBMULTIPLE ANGLES )|118 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPEICAL TYPE QUESTIONS ) SET -4|20 Videos
  • TRIGONOMETRIC EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos

Similar Questions

Explore conceptually related problems

If tan theta =(1)/(sqrt(7)) and theta is an acute angle , then ("cosec"^(2) theta - sec^(2) theta )/( "cosec"^(2) theta + sec^(2) theta =

If cot theta = sqrt(7) and theta does not lie the first quadrant , then ( " cosec"^(2) theta - sec^(2) theta )/( "cosec"^(2) theta + sec^(2) theta )=

Prove that (tan theta + cot theta)^(2) = "sec"^(2) theta + "cosec"^(2)theta = "sec"^(2) theta. "cosec"^(2) theta .

sin^(4) theta + 2 sin^(2) theta (1-(1)/("cosec"^(2) theta ) )+ cos^(4) theta =

"cosec"^(2) theta * cot^(2) theta -sec^(2) theta * tan^(2) theta - (cot^(2) theta - tan^(2) theta ) (sec^(2) theta * "cosec"^(2) theta -1)=

The number of solutions of sec^(2) theta + cosec^(2) theta + 2 cosec^(2) theta = 8, 0 le theta le pi//2 is

sec^2 theta + cosec^2 theta =…………

The least value of 4 sec^(2) theta + 9 " cosec"^(2) theta is

If cosec^(6) theta - cot^(6) theta = a cot^(4) theta + b cot^(2) theta + c then a+b+c=

If sin theta + cosec theta =2 then sin^(n) theta + cosec^(n) theta =

DIPTI PUBLICATION ( AP EAMET)-TRIGONOMETRIC RATIOS AND IDENTITIES -EXERCISE 1 A ( TRIGONOMETRIC FUNCTIONS)
  1. "cosec"^(2) theta * cot^(2) theta -sec^(2) theta * tan^(2) theta - (co...

    Text Solution

    |

  2. sec^(2)A tan^(2) B-tan^(2)A sec^(2) B=

    Text Solution

    |

  3. 2 sec^(2) theta - sec^(4) theta - 2 "cosec"^(2) theta + " cosec"^(4) t...

    Text Solution

    |

  4. sin^(2) alpha * tan alpha + cos^(2) alpha * cot alpha + 2 sin alpha co...

    Text Solution

    |

  5. If (sin alpha + "cosec" alpha )^(2) + ( cos alpha + sec alpha )^(2)=k+...

    Text Solution

    |

  6. sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(...

    Text Solution

    |

  7. If sin A , cos A and tan A are in G.P. then cot^(6) A- cot^(2) A =

    Text Solution

    |

  8. ( sec theta + tan theta -1)/( tan theta - sec theta +1)

    Text Solution

    |

  9. (cot theta + " cosec " theta -1)/(cot theta - " cosec " theta +1)=

    Text Solution

    |

  10. cot^(2) theta ((sec theta -1)/(1+ sin theta ))+ sec^(2) theta ((sin th...

    Text Solution

    |

  11. (2 sin theta * tan theta (1- tan theta ) + 2 sin theta sec^(2) theta )...

    Text Solution

    |

  12. ((1+ sin theta - cos theta )/( 1+ sin theta + cos theta ))^(2)=

    Text Solution

    |

  13. (1)/(sec alpha - tan alpha ) - (1)/( cos alpha)=

    Text Solution

    |

  14. (1)/(sec^(4) alpha ) +(1)/("cosec"^(4) alpha ) +(2)/(sec^(2) alpha + ...

    Text Solution

    |

  15. (cos A)/( 1+ sin A) +(cos A)/( 1-sin A )=

    Text Solution

    |

  16. ( tan theta)/( sec theta -1)-(tan theta )/( sec theta + 1)=

    Text Solution

    |

  17. The expression (tan A)/(1- cot A) + ( cot A )/( 1- tan A) can be writt...

    Text Solution

    |

  18. (cos theta )/( sec theta + tan theta ) + ( cos theta )/( sec theta - t...

    Text Solution

    |

  19. (tan A + tan B)/( cot A + cot B)+(1- tan A tan B)/( 1- cot A cot B)=

    Text Solution

    |

  20. ( sec theta + tan theta )/("cosec " theta + cot theta ) -(sec theta - ...

    Text Solution

    |