Home
Class 12
MATHS
cos alpha + cos beta + cos gamma + cos (...

`cos alpha + cos beta + cos gamma + cos ( alpha + beta + gamma ) =`

A

`4 sin""((alpha + beta )/(2))* cos""((beta + gamma )/(2)) * cos ((gamma + alpha )/(2))`

B

`4 cos""((alpha + beta )/(2)) * cos""((beta + gamma )/(2)) * cos ""((gamma + alpha )/(2))`

C

`4 sin""((alpha + beta )/(2))* sin ((beta + gamma )/(2)) * sin""(( gamma + alpha )/(2))`

D

`4 cos ""((alpha + beta )/(2)) * cos""((beta + gamma )/(2))* sin""((gamma + alpha )/(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 E ( TRIGONOMETRIC IDENTITIES )|49 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 F ( PERIODIC FUNCTIONS )|39 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 C ( MULTIPLE AND SUBMULTIPLE ANGLES )|118 Videos
  • TRIGONOMETRIC EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then show that cos 3 alpha + cos 3 beta + cos 3 gamma = 3 cos ( alpha + beta + gamma)

If x=r cos alpha cos beta cos gamma , y= cos alpha cos beta sin gamma , z= r sin alpha cos beta , mu = r sin beta " then " x^(2)+y^(2) + z^(2)+mu^(2)=

If cos alpha + cos beta + cos gamma = 0 sin alpha + sin beta + sin gamma , Prove that cos^(2) alpha + cos^(2) beta + cos^(2) gamma = 3/2 = sin^(2) alpha + sin^(2) beta + sin^(2) gamma .

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then show that cos ( alpha + beta) + cos ( beta + gamma) + cos ( gamma + alpha) = 0

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then show that sin 3 alpha + sin 3 beta + sin 3 gamma = 3 sin ( alpha + beta + gamma)

Assertion (A): If A, B, C are the angles of a triangle such that cos A + cos B + Cos C = 0 = sin A + sin B + sin C then cos 3A + cos 3B + cos 3C = -3 Reason (R) : If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + singamma then cos 3 alpha + cos 3 beta + cos 3 gamma = 3 cos (gamma+alpha+beta)

cos (alpha + beta + gamma ) + cos (alpha - beta - gamma) + cos ( beta - gamma - alpha ) + cos ( gamma - alpha - beta )=

Let A and B denote the statements A: cos alpha + cos beta + cos gamma=0, B:sin alpha + sin beta + sin gamma=0 , If cos(beta - gamma) + cos(gamma - alpha) + cos(alpha - beta)=-3/2 , then