Home
Class 12
MATHS
Maximum of cos A - cos B , if A+B=pi/(2)...

Maximum of cos A - cos B , if `A+B=pi/(2)` is

A

`sqrt(2) `

B

`2`

C

`3`

D

`-3 `

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPEICAL TYPE QUESTIONS ) SET -1|15 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPEICAL TYPE QUESTIONS ) SET -2|15 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 F ( PERIODIC FUNCTIONS )|39 Videos
  • TRIGONOMETRIC EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos

Similar Questions

Explore conceptually related problems

Minimum of cos A - cos B , " if " A+B=pi//2 is

If Delta ABC if cos A cos B + sin A sin B sin C = 1 and C = pi/2 , then A : B =

If none of A,B, A+B is an integral multiple of pi , then prove that (1- cos A+ cos B- cos (A+B))/(1+ cos A- cos B - cos (A+B))=tan.(A)/(2) cot. (B)/(2)

Evaluate sum(sin (A+B)sin(A-B))/(cos^(2)A cos^(2)B) : if non of cos A , cos B, cos C is zero.

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

The value of cos y cos ((pi)/(2) - x) - cos ((pi)/(2) - y) cos x + sin y cos ((pi)/(2) - x) + cos x sin ((pi)/(2) - y) is zero if