Home
Class 12
MATHS
Minimum of cos A - cos B , " if " A+B=pi...

Minimum of `cos A - cos B , " if " A+B=pi//2` is

A

1

B

`sqrt(2)`

C

`-sqrt(2) `

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPEICAL TYPE QUESTIONS ) SET -1|15 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPEICAL TYPE QUESTIONS ) SET -2|15 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 F ( PERIODIC FUNCTIONS )|39 Videos
  • TRIGONOMETRIC EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos

Similar Questions

Explore conceptually related problems

Maximum of cos A - cos B , if A+B=pi/(2) is

If sin A = sin B and cos A = cos B , then show that A = 2n pi + B, n in Z

If A+B+C=pi and cos A = cos B cos C " then " cot B cot C =

If A and B are acute angles satisfying 3 cos^2 A + 2 cos^2 B = 4 " and " (3 sin A)/(sin B) = (2cos B)/(Cos A) , then A + 2B =

Evaluate sum(sin (A+B)sin(A-B))/(cos^(2)A cos^(2)B) : if non of cos A , cos B, cos C is zero.

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

The value of cos y cos ((pi)/(2) - x) - cos ((pi)/(2) - y) cos x + sin y cos ((pi)/(2) - x) + cos x sin ((pi)/(2) - y) is zero if