Home
Class 12
MATHS
I : sin^(2) 42^(@) - sin^(2) 12^(@)=(sqr...

I : `sin^(2) 42^(@) - sin^(2) 12^(@)=(sqrt(5)+1)/(8) `
II : `8 cos^(3) 10^(@) - 6 cos10^(@)= sqrt(3) `

A

only I is true

B

only II is true

C

both I & II are true

D

neither I nor II are true

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPEICAL TYPE QUESTIONS ) SET -2|15 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPEICAL TYPE QUESTIONS ) SET -4|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 G ( VARIATION IN TRIGONOMETRIC FUNCTIONS )|67 Videos
  • TRIGONOMETRIC EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos

Similar Questions

Explore conceptually related problems

8 cos^(3) 10^(@) -6 cos 10^(@) =

Prove that cos 48^(@) . Cos 12^(@) =(3+sqrt5)/(8) .

If A=6 sin20^(@) - 8 sin^(3) 20^@ , B= 8 cos^(3) 20^(@)-6 cos 20^(@) and C= ( sin 3 theta )/( sin theta ) - ( cos 3 theta )/( cos theta ) then

1/(sin10^(@))-sqrt3/(cos10^(@))=

Prove that cos 20^(@) cos 40^(@) - sin5^(@) sin 25^(@) = (sqrt(3)+1)/(4) .

Show that 1/(sin 10^(@)) - (sqrt(3))/(cos 10^(@)) = 4 .

sin ^(-1) (sqrt(3))/(2) + sin ^(-1) sqrt(2/3)=

sin[(pi)/6+cos^(-1)(-(sqrt(3))/2)]=