Home
Class 12
MATHS
Cot^(-1)(4/3)-Cot^(-1)(15/8)=...

`Cot^(-1)(4/3)-Cot^(-1)(15/8)=`

A

`Cot^(-1)(16/65)`

B

`Cot^(-1)(84/65)`

C

`Cot^(-1)(84/85)`

D

`Cot^(-1)(84/13)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 1)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 2)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set -4|8 Videos

Similar Questions

Explore conceptually related problems

Prove that "Tan"^(-1)2+Tan^(-1)3=Cot^(-1)(1/2)+Cot^(-1)(1/3)=(3pi)/4

If "Cot"^(-1)4/3+"Cot"^(-1)5/3=Tan^(-1)k , then k =

Find the value of the following cot^(-1)(1/2)+cot^(-1)(1/3)

If Cos^(-1)x=Cot^(-1)(4//3)+Tan^(-1)(1//7) then x =

The value of cot[Cot^(-1)7+Cot^(-1)8+Cot^(-1)(18)] is

If S_(n)=cot^(-1)(3)+cot^(-1)(7)+cot^(-1)(13)+cot^(-1)(21)+….. n terms, then

Show that Tan^(-1) 1/7 + Tan^(-1) 1/8 = Cot^(-1) 201/43 + Cot^(-1) 18

Cot^(-1)3+Cot^(-1)7+Cot^(-1)13+ ……n terms =

cot(pi/4-2Cot^(-1)3)=