Home
Class 12
MATHS
A: int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"T...

A: `int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"Tan"^(-1)((1)/(sqrt(5))"tan" (x)/(2))+c`
R: If `a gt b` then `int (dx)/(a+b cosx)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(sqrt(a-b))/(a+b)"tan"(x)/(2)]+c`

A

Both A and R are true and R is the correct explanation of A

B

Both A and R are true but R is not correct explanation of A

C

A is true but R is false

D

A is false but R is true

Text Solution

Verified by Experts

The correct Answer is:
1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-3)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

A: int (1)/(5+4 sin x)dx=(2)/(3) Tan^(-1)((4+5tan (x//2))/(3))+c R : If a gt 0, a gt b , then int (dx)/(a+b sin x)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(b+a tan (x//2))/(sqrt(a^(2)-b^(2)))]+c

A: int (1)/(5+4sinx)dx=(2)/(3) "Tan"^(-1)((4+5 tan(x//2))/(3))+c R : If a gt 0, a gt b , then int(dx)/(a+b sin x)= (2)/(sqrt(a^(2)-b^(2)))"Tan"^(-1)[(b+a tan(x//2))/(sqrt(a^(2)-b^(2)))]+c

Knowledge Check

  • 2Tan^(-1)((sqrt(a-b))/(a+b)"tan"x/2)=

    A
    `Cos^(-1)((b+acosx)/(a+bcosx))`
    B
    `Cos^(-1)((b+acosx)/(a-bcosx))`
    C
    `Cos^(-1)((b-acosx)/(a+bcosx))`
    D
    `Cos^(-1)((b-acosx)/(a-bcosx))`
  • If y=(2)/(sqrt(a^(2)-b^(2)))tan^(-1) [sqrt((a-b)/(a+b))tan""(x)/(2)]

    A
    `(d^(2)y)/(dx^(2))""|_(x=(pi)/(2))=`
    B
    `(b)/(2a^(2))`
    C
    `(b)/(a^(2))`
    D
    `(2b)/(a)`
  • (d )/(dx ) { (2)/( sqrt(a ^(2) - b ^(2))) Tan ^(-1) (( sqrt (a -b ))/( a + b) tan (x )/(2 )) }=

    A
    ` a + b sin x `
    B
    `a + b cos x `
    C
    ` (1)/( a+ b sin x )`
    D
    `(1)/( a + b cos x )`
  • Similar Questions

    Explore conceptually related problems

    A: int (1)/(3+4cosx)dx=(1)/(sqrt(7))log|(sqrt(7)+tan(x//2))/(sqrt(7)-tan(x//2))|+c R : If a lt b then int(dx)/(a+b cosx)= (1)/(sqrt(b^(2)-a^(2)))log|(sqrt(b+a)+sqrt(b-a)tan(x//2))/(sqrt(b+a)-sqrt(b-a)tan(x//2))|+c

    tan[2"Tan"^(-1)(sqrt(5)-1)/2]=

    (d)/(dx ) { Tan ^(-1) ( sqrt(|(a -b)/(a +b)|)tan ""(x)/(2))}=

    A: int (1)/(4+5 sinx)dx=(1)/(3)log|(2tan(x//2)+1)/(2tan(x//2)+4)|+c R : If 0 lt a lt b , then int(dx)/(a+b sin x)=(1)/(sqrt(b^(2)-a^(2)))log|(a tan (x//2)+b-sqrt(b^(2)-a^(2)))/(a tan (x//2)+b+sqrt(b^(2)-a^(2)))|+c

    d/(dx) ("Tan"^(-1) (x)/(sqrt(a^2 - x^2))) =