Home
Class 12
MATHS
The value of cot[Cot^(-1)7+Cot^(-1)8+Cot...

The value of `cot[Cot^(-1)7+Cot^(-1)8+Cot^(-1)(18)]` is

A

4

B

5

C

6

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 1)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 2)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set -4|8 Videos

Similar Questions

Explore conceptually related problems

Cot^(-1)3+Cot^(-1)7+Cot^(-1)13+ ……n terms =

The value of cot^(-1)(cot((5pi)/6))=

Cot^(-1)(4/3)-Cot^(-1)(15/8)=

The value of cot^(-1)(2+sqrt(3)) is

The range of cot^(-1)(x) is =

I. The value of sec^(2)(Tan^(-1)2)+cosec^(2)(Cot^(-1)3) is 10 II. The value of tan{Sin^(-1)(3/5)+Cot^(-1)(3/2)} is 16/7

The value of cot(7pi)/16 + 2cot(3pi)/8 + cot(15pi)/16 is:

Find the value of the following cot^(-1)(1/2)+cot^(-1)(1/3)

If the sum of the series cot^(-1)2+cot^(-1)8+cot^(-1)18+…+cot^(-1)2n^(2)+…… " upto "infty " is "(kpi)/4 then the value of K is