Home
Class 12
MATHS
Sin^(-1)(xsqrt(1-y^(2))+ysqrt(1-x^(2)))=...

`Sin^(-1)(xsqrt(1-y^(2))+ysqrt(1-x^(2)))=`

A

`Sin^(-1)x+Sin^(-1)y`

B

`Cos^(-1)x+Cos^(-1)y`

C

`Tan^(-1)x+Tan^(-1)y`

D

`Cot^(-1)x+Cot^(-1)y`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 1)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 2)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set -4|8 Videos

Similar Questions

Explore conceptually related problems

Sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

If Sin^(-1)(x)+Sin^(-1)(y)+Sin^(-1)(z) = pi , prove that xsqrt(1-x^(2)) + ysqrt(1-y^(2)) +zsqrt(1-z^(2)) = 2xyz .

If Sin^(-1)x+Sin^(-1)y+Sin^(-1)z=pi then prove that n xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xy z

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

tan^(-1)((yz)/(xsqrt(x^(2)+y^(2)+z^(2))))+tan^(-1)((zx)/(ysqrt(x^(2)+y^(2)+z^(2)))) +tan^(-1)((xy)/(zsqrt(x^(2)+y^(2)+z^(2))))=

"Tan"^(-1)(yz)/(xsqrt(x^(2)+y^(2)+z^(2)))+"Tan"^(-1)(zx)/(ysqrt(x^(2)+y^(2)+z^(2)))+"Tan"^(-1)(xy)/(zsqrt(x^(2)+y^(2)+z^(2)))=

2Cos^(-1)x=Sin^(-1)(2xsqrt(1-x^(2))) is valid for