Home
Class 12
MATHS
The quadratic equation whose roots are l...

The quadratic equation whose roots are l and m where
`l =underset(theta to 0)lim ((3 sin theta-4 sin^(2)theta)/(theta))and m=underset(theta to 0)lim (2 tan theta)/(theta(1-tan^(2) theta))` is

A

`x^(2)+5x+6=0`

B

`x^(2)-5x+6=0`

C

`x^(2)-5x-6=0`

D

`x^(2)+5x-6=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1B( One Sided Limits)|71 Videos
  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1C(Continuity)|86 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • LINEAR PROGRAMMING [APPENDIX-2]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise -1|33 Videos

Similar Questions

Explore conceptually related problems

The equadratic equation whose roots are l and m, where l = lim_( theta to 0) ( (3 sin theta - 4 sin^(2) theta)/theta) and m = lim_( theta to 0) ( 2 tan theta)/ (theta ( 1 - tan^(2) theta)) is

underset(theta to 0)"Lt" (3tantheta-tan 3 theta)/(2theta^(3))

underset(theta to pi//2)lim (1-sin^(2)theta)/(cos theta(pi//2-theta))=

(sin^(2) theta )/(1- cot theta )+(cos^(2) theta )/( 1- tan theta ) =

The value of (2 (sin2 theta-2 cos^(2)theta-1))/(cos theta-sin theta-cos 3 theta +sin 3 theta)=

sec^(4) theta (1-sin^4 theta ) - tan^(2) theta =

If tan (theta)/(2) =cosec theta - sin theta then tan^(2)(theta/2)=

(cos theta)/(1 - tan theta) + (sin theta)/(1 - cot theta) =……...

(2 sin theta * tan theta (1- tan theta ) + 2 sin theta sec^(2) theta )/( (1+ tan theta)^(2))=

If sin^(4) theta + cos^(4) theta = l + 3 +k sin^(2) theta cos^(2) theta then