Home
Class 12
MATHS
Let alpha and beta be the distinct roots...

Let `alpha and beta` be the distinct roots of `ax^(2)+bx+c=0," then "underset(x to a)lim (1-cos(ax^(2)+bx+c))/((x-alpha)^(2))`

A

`a^(2)/2(alpha-beta)^(2)`

B

0

C

`-a^(2)/2(alpha-beta)^(2)`

D

`1/2(alpha-beta)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1B( One Sided Limits)|71 Videos
  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1C(Continuity)|86 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • LINEAR PROGRAMMING [APPENDIX-2]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise -1|33 Videos

Similar Questions

Explore conceptually related problems

If 'alpha' is a repeated root of ax^(2)+bx+c=0 then Lt_(x to alpha)(tan(ax^(2)+bx+c))/((x-alpha)^(2))=

IF alpha , beta are the roots of ax ^(2) +bx + c =0 then alpha ^2 + beta ^2=

IF alpha , beta are the roots of ax ^(2)+bx +c=0 then alpha ^3 + beta ^3=

underset(x to 0)"Lt" (cos ax-cos bx)/(x^(2))=

Sum of the roots of ax^(2) + bx + c = 0 is..

Product of the roots of ax^(2) + bx + c = 0 is…

IF alpha , beta are the roots of ax^2 + bx +c=0 then the match the following

IF alpha , beta are the roots of ax ^2 +bx +c=0 then (1)/(alpha ^2) +(1)/(beta^2)=

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha beta ^5=

IF alpha , beta are the roots of ax^2+ bx + c=0 then (1)/(alpha ^3)+(1)/(beta ^3)=