Home
Class 12
MATHS
underset(n to oo)lim ((1+2+....+"n terms...

`underset(n to oo)lim ((1+2+....+"n terms")(1^(2)+2^(2)+...+"n terms"))/(n(1^(3)+2^(3)+...+"n terms"))=`

A

`3//2`

B

`2//3`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1B( One Sided Limits)|71 Videos
  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1C(Continuity)|86 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • LINEAR PROGRAMMING [APPENDIX-2]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise -1|33 Videos

Similar Questions

Explore conceptually related problems

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

underset(n to oo)lim (1+3+3^(2)+...3^(n))/(1+2+2^(2)+...+2^(n))=

underset(n to oo)lim (2^(n)-n)/(2^(n))=

underset(n to oo)lim (1+3+6+...+n(n+1)//2)/(n^(3))=

underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+n^(2))^(3))=

underset(n to oo)lim (2^(1//n)-1)/(2^(1//n)+1)=

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim (1.1!+2.2!+3.3!+...+n.n!)/((n+1)!)=

underset(n to oo)lim (1^(2)+2^(2)+3^(2)+...+n^(2))/(n^(3))=

underset(n to oo)lim (5^(n)+1)/(3^(n)-1)=