Home
Class 12
MATHS
If a gt 1", then "(a^(x)-x^(-x))/(a^(x)+...

If `a gt 1", then "(a^(x)-x^(-x))/(a^(x)+a^(-x))=`

A

`-1

B

0

C

1

D

`oo`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1B( One Sided Limits)|71 Videos
  • LIMITS AND CONTINUITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1C(Continuity)|86 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • LINEAR PROGRAMMING [APPENDIX-2]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise -1|33 Videos

Similar Questions

Explore conceptually related problems

If a gt 1," then "underset(x to oo)"Lt"(a^(x)-a^(-x))/(a^(x)+a^(-x))=

If a gt 0 and underset(x to a)"Lt "(a^(x)-x^(a))/(x^(x)-a^(a))=-1" then "a=

If x gt 0, then (x)/(1+x)-log (1+x)

If x gt 0 then tan h^(-1) ((x^(2) - 1)/(x^(2) + 1)) =

If x gt 0 then int ("tan"^(-1) (x)/(x^(2) + 1) + "tan"^(-1) " "(x^(2) +1)/(x) ) dx =

For a gt 1, b gt 1 , the value of int_(0)^(oo) (a^(-x)-b^(-x))dx=

If x gt 0 , show that log(1+x) - (2x)/(2+x) is increasing.

Let g(x) =1+x-[x] and f(x) ={{:(-1, if, x lt 0),(0, if, x=0),(1, if, x gt 0):} , then (f(g(2009)))/(g(f(2009)) =