Home
Class 12
MATHS
If (omega ne1) is a cube root of unity ,...

If `(omega ne1)` is a cube root of unity , then
`{:(1 , 1 + i+ omega^(2) , omega^(2)) , (1-i, -1 , omega^(2) -1) , (-i , -1 + omega - i, -1):}|

A

`-1`

B

`-2`

C

0

D

2

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1|124 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-1|5 Videos
  • COORDINATE SYSTEM (3D)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET- 4)|3 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-4)|8 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity , then (x + 1) ( x + omega) ( x- omega - 1) =

If omega is a cube root of unity , then |{:( 1 , omega , 2 omega^(2)) , (2 , 2omega^(2) , 4 omega^(3)) , (3 , 3 omega^(3) , 6 omega^(4)):}| =

If omega is a imaginary cube root of unity , then 225 + (3 omega + 8 omega^(2))^(2) + (3 omega^(2) + 8 omega)^(2) =

If omega is a complex cube root of unity , then sum_(k = 1)^(6) ( omega^(k) + (1)/(omega^(k)))^(2) =

If omega is a cube root of unit, then Delta=|(x+1,omega, omega^(2)),(omega, x+omega^(2),1),(omega^(2),1,x+omega)|=

If omega(ne1) is a cube root of unity , and (1+omega)^7=A+Bomega . Then (A,B) rquals :

If omega is a complex cube root of unity, then (x+1)(x+omega)(x-omega-1)

If 1 , omega , omega^(2) are the cube roots of unity , then (x + y + z) (z + y omega + zomega^(2)) ( x + y omega^(2) + z omega) =