Home
Class 12
MATHS
The ascending order of the values of ...

The ascending order of the values of
`z_1(1+i)^4+(1-i)^4,
z_2=(sqrt3+i)^(12)+(sqrt3-i)^(12),
z_3=(1+isqrt3)^(9)+(1-isqrt3)^9`

A

`z_(1),z_(2),z_(3)`

B

`z_(2),z_(3),z_(1)`

C

`z_(3),z_(1),z_(2)`

D

`z_(1),z_(3),z_(2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-3|1 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-1|5 Videos
  • COORDINATE SYSTEM (3D)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET- 4)|3 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-4)|8 Videos

Similar Questions

Explore conceptually related problems

The ascending order of the values of z_1=(1+i)^4,z_2=(sqrt3+i)^(12),z_3=(1+isqrt3)^(9) + (1-isqrt3)^9

The descending order of the values of z_1=((sqrt3)/(2)i+1/2)^6,z_2=((1)/(sqrt2)+(i)/(sqrt2))^4,z_3=((sqrt3)/(4)+(i)/(4))^6

Find all the values of (sqrt3 + i) ^(1/4) .

The values of (1-sqrt3i)^(1//3) are

The values of (sqrt3+i)^(1//4) are

The ascending order of the moduli of the complex numbers z_1=1 +I,z_2=1 +2i,z_3=(1-i)/(sqrt(2)),z_4=3+4i is

((1+isqrt3)/(1-isqrt3))^6+((1-isqrt3)/(1+isqrt3))^6=

The continued product of the four values of (1-isqrt3)^(3//4) is

Find the value of (1 + i sqrt3) ^(3)