Home
Class 12
MATHS
If (1)/(1!9!)+(1)/(3!7!)+(1)/(5!5!)+(1)/...

If `(1)/(1!9!)+(1)/(3!7!)+(1)/(5!5!)+(1)/(7!3!)+(1)/(9!1!)=(2^n)/(10!)`, then `n=`

A

3

B

5

C

7

D

9

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B (BINOMIAL COEFFICIENTS)|83 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

(5)/(1!)+(7)/(3!)+(9)/(5!)+....=

(1)/(1.3)+(1)/(2.5)+(1)/(3.7)+(1)/(4.9)+...=

(1)/(2.3)+(1)/(4.5)+(1)/(6.7)+(1)/(8.9)+...

If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =

(1)/(1.3)+(1)/(2)((1)/(3.5))+(1)/(3)((1)/(5.7))+....=

(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=

(1)/(1.3) + (1)/(3.5) + (1)/(5.7) + …. (n-3) terms

(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+....=

1+(3)/(1!)+(5)/(2!)+(7)/(3!)+....=