Home
Class 12
MATHS
int (1+tan^(2)x + tan^(4)x+tan^6 x)dx=...

`int (1+tan^(2)x + tan^(4)x+tan^6 x)dx=`

A

`tan^(2)x+(tan^(5)x)/(5)+c`

B

`"tan"x+(tan^(5)x)/(5)+c`

C

`x+(tan^(3)x)/(3)+(tan^(5)x)/(5)+(tan^(7)x)/(7)+c`

D

`"tan"x+(tan^(3)x)/(3)+(tan^(5)x)/(5)+(tan^(7)x)/(7)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|164 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

int tan^(4) x dx=

int sec^(2) x tan^(2) x dx=

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is

int e^(x) (tan x tan^(2) x ) dx =

int (tanx)/(1+tan^(2)x)dx=

int_(0)^(pi//4) tan^(6) x dx=

int_(0)^(pi//4)(tan^(4)x+tan^(3)x)dx=

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is