Home
Class 12
MATHS
"A : Cosech"^(-1) 2 = loge ((1+sqrt5)/2)...

`"A : Cosech"^(-1) 2 = log_e ((1+sqrt5)/2)`
`"R : Cosech"^(-1) x = log_e [(1+sqrt(1+x^2))/2]`

A

Both A and R are true and R is the correct explanation of A

B

Both A and R are true but R is not correct explanation of A

C

A is true but R is false

D

A is false but R is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 3|3 Videos
  • Hyperbola

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET 4|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos

Similar Questions

Explore conceptually related problems

Cosech ""^(-1) (3) =

Assertion (A) : "cosech"^(-1)(2)=log_(e )((1+sqrt(5))/(2)) Reason (R ) : "Cosech"^(-1)(x)=log_(e ) ((1+sqrt(1+x^(2)))/(2))

"Sech"^(-1)(1/2) - "Cosech"^(-1) (3/4) =

"Cosech"^(-1)((1)/(5))=

If cosh^(-1)(x)=log_(e )(2+sqrt(3)) , then x =

If sin h^(-1) (x) = log_(e) (5 + sqrt(26)) then x =

IF cos h ^(-1) x= 2 log _(e) ( sqrt(2)+1) , then x=

f(x)=2x+cot^(-1)x+log (sqrt(1+x^(2))-x)

If cos h^(-1) (k) = log_(e) (3 + 2 sqrt(2)) then k =