Home
Class 12
MATHS
int (1)/(log x)-(1)/((log x)^(2))dx=...

`int (1)/(log x)-(1)/((log x)^(2))dx=`

A

`(2x)/(logx)+c`

B

`(x)/(1+log x)+c`

C

`(x)/(logx)+c`

D

none

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int (log x-1)/((log x)^(2))dx=

int_(2)^(e) ((1)/(ln x) - (1)/((ln x)^(2)))dx=

int (log x)^(5)dx=

Evaluate int [ " log" (log x) + (1)/((log x )^(2)) ] dx

int (1+log x)/(1+x log x)dx=

int {((log x-1))/((1+(logx)^(2)))}^(2)dx=