Home
Class 12
MATHS
Evaluate the integerals. int e ^(x)...

Evaluate the integerals.
`int e ^(x)(tan x + sec ^(2) x) dx`
`on I sub R \\{(2n +1)(pi)/(2): n in Z}.`

A

`e^(x)secx+c`

B

`e^(x)tan x sec x+c`

C

`e^(x)tanx+c`

D

none

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the integerals. int e ^(x)cos x dx on R.

Evaluate the integerals. int e ^(x)(1+x^(2)) dx

Evaluate the integerals. int (sec x)/((sec x + tan x)^(2))dx on I sub R \\{(2 n +1) (pi)/(2): n in Z}.

Evaluate the integrals. int e^(x) (sec x + sec x tan x) dx on I sub R - { (2n +1)(pi)/(2): n in Z}.

Evaluate the integerals. int e^(2x) dx, x in R.

Evaluate the integerals. int x ^(2) e ^(-3x) dx

Evaluate the integerals. int tan^(4) xsec ^(2) x dx , x in I sub R \\ { ((2n +1)pi)/(2): n in Z}.

Evaluate the integerals. int (sec ^(2) x)/((1+tan x)^(3))dx on I sub R \\{n pi -(pi)/(4) : n in Z}.

Evaluate the integerals. int x sec ^(2) x dx on I sub R \\ {((2 n +1)pi)/(2) : n " in a n integer"}.

Evaluate the integerals. int 2x e ^(x^(2))dx on R.