Home
Class 12
MATHS
inte^(x)(tanx+tan^(2)x)dx=...

`inte^(x)(tanx+tan^(2)x)dx=`

A

`e^(x)(tanx-1)+c`

B

`e^(x)(tanx-1)x+c`

C

`e^(x)(tanx+1)+c`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int e^(x) (tan x tan^(2) x ) dx =

int (tanx)/(1+tan^(2)x)dx=

int sec^(2) x tan^(2) x dx=

int tan^(4) x dx=

int (tanx)/(sqrt(a+b tan^(2)x))dx=

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

I : int_(0)^(a)sqrt(a^2-x^(2))dx=pia^(2) II : int_(0)^(pi//4)(tan^(4)x+tan^(2)x)dx=1

If inte^(-x)tan^(-1)(e^(x))dx

int_(0)^(pi//4)(tan^(4) x + tan^(2) x ) dx=

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is