Home
Class 12
MATHS
int e^(x) (x+1) log x dx=...

`int e^(x) (x+1) log x dx=`

A

`e^(x)(x log x-1)-x+c`

B

`e^(x)(x log x-1)+c`

C

`e^(x)(x log x+1)+c`

D

none

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int x^(x) ( 1 + log x ) dx =

int log x dx=

int x^(4)(1+ log x) dx =

Evalute the following integrals int e^(x) ((x log x + 1)/(x ) ) dx

int e^(x) (tanx - log cosx ) dx =

Evaluate the integerals. int e ^(x) ((1+ x log x)/(x)) dx on (0,oo).

Evalute the following integrals int e^(x) (tan x + log sec x ) dx

int e^("log "x) cos x dx =

int e^(x log a) e^(x)dx=