Home
Class 12
MATHS
If I(n)= int (log x)^(n)dx then I(n)+nI(...

If `I_(n)= int (log x)^(n)dx` then `I_(n)+nI_(n-1)=`

A

`x (log x)^(n-1)`

B

`x (log x)^(n)`

C

`nx (log x)^(n)`

D

none

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

If I_(n)=int (cos nx)/(cosx)dx, then I_(n)=

Obtain reduction formula for If I_(n)=int (log x) ^(n)dx, then show that I_(n) =x (log x)^(n) -nI_(n-1), and hence field int (log x) ^(4) dx.

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

If I_(n) = int Cot^(n) xdx then I_(4) + I_(6) =

If I_(n) = int(logx)^(n) dx then prove that I_(n) = x(logx)^(n) - nI_(n-1) and hence evaluate int(log x)^(4) dx

If I_(m,n) - int (x^(m) (logx)^(n) dx then I_(m,n) - (x^(m+1))/((m + 1)) (logx)^(n) =