Home
Class 12
MATHS
int (log x)^(5)dx=...

`int (log x)^(5)dx=`

A

`x[log^(5)x-5 log^(4)x+20 log^(3)x-60log^(2)x-120logx-120]+c`

B

`x[log^(5)x-5 log^(4)x+20 log^(3)x-60log^(2)x+ 120logx-120]+c`

C

`x[log^(5)x+5 log^(4)x-20 log^(3)x+60log^(2)x+ 120logx-120]+c`

D

`x[log^(5)x-5 log^(4)x+20 log^(3)x-60log^(2)x-120logx-120]-c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int (log x )^(3) dx =

Obtain reduction formula for If I_(n)=int (log x) ^(n)dx, then show that I_(n) =x (log x)^(n) -nI_(n-1), and hence field int (log x) ^(4) dx.

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

Evaluate the integerals. int (log x)^(2) dx (0, oo).

int sin (log x)dx=

int (2)/(x [1 + (log x)^(2)]) dx =

Evalute the following integrals int (log x)/(x^(2)) dx