Home
Class 12
MATHS
If f(n)(x)=log log log ....log x(log is ...

If `f_(n)(x)=log log log ....log x(log` is repeated n times, then `int[(xf_(1)(x)f_(2)(x).....f_(n)f(x)]^(-1)dx=`

A

`f_(n+1)(x)+c`

B

`(fn_(n+1)(x))/(n+1)+c`

C

`nf_(a)f(x)+c`

D

`(f_(n)(x))/(n)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int (f'(x))/(f(x)log f(x))dx=

y = log^(n)x x where log^(n) means log.log.log ....(repeated n times) then x.logx.log^2x.log^3x-log^(n-1)x,(dy)/(dx) =

log ( x )^(n) = n .log x is true for n .

int (1)/(x log x [log (log x)])dx on (1, oo).

f(x) = log((1+x)/(1-x)) satisfies the equation: f(x_(1)) +f(x_(2))

If f(x) = log (sec x + tan x), then find f' (x).