Home
Class 12
MATHS
If I(n)=int x^(n)*e^(cx)dx for n le1 the...

If `I_(n)=int x^(n)*e^(cx)dx` for `n le1` then `c*I_(n)+n*I_(n-1)=c`

A

`x^(n)e^(cx)`

B

`x^(n)`

C

`e^(cx)`

D

`x^(n)+e^(cx)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int (sin nx)/(sin x)dx where n gt 1 , then I_(n)-I_(n-2)

If I_(n) = int x^(n) e^(-x) dx prove that I_(n) = -x^(n) e^(-x) + nI_(n-1)

If I_(n)= int (e^(ax))dx/(x^(n)) , then I_(n)=

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

If I_(m,n)=int (x^(m))/((log x)^(n))dx then (m+1)I_(m,n)-n.I_(m,n+1)=