Home
Class 12
MATHS
If I(m,n)=int x^(m)(logx)^(n)dx then I(m...

If `I_(m,n)=int x^(m)(logx)^(n)dx` then `I_(m.n)=`

A

`(x^(m+1))/(m+1)(logx)^(n)-(n)/(n+1)I_(m,n-1)`

B

`(x^(m+1))/(m+1)(logx)^(n)+(n)/(n+1)I_(m,n-1)`

C

`(x^(m+1))/(m+1)(logx)^(n)-(n)/(n-1)I_(m,n-1)`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

If I_(m,n)=int (x^(m))/((log x)^(n))dx then (m+1)I_(m,n)-n.I_(m,n+1)=

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

If I_(n) = int(logx)^(n) dx then prove that I_(n) = x(logx)^(n) - nI_(n-1) and hence evaluate int(log x)^(4) dx

Obtain reduction formula for If I_(n)=int (log x) ^(n)dx, then show that I_(n) =x (log x)^(n) -nI_(n-1), and hence field int (log x) ^(4) dx.

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(m.n) = int sin^(m) x cos^(n) xdx then I_(5,4) =

If I_(n)= int (e^(ax))dx/(x^(n)) , then I_(n)=