Home
Class 12
MATHS
If I(n)=int (cos nx)/(cosx)dx, then I(n)...

If `I_(n)=int (cos nx)/(cosx)dx,` then `I_(n)=`

A

`(2)/(n+1)sin(n-1)x-I_(n-2)`

B

`(2)/(n-1)sin(n+1)x-I_(n-2)`

C

`(2)/(n-1)sin(n-1)x-I_(n-2)`

D

`(3)/(n-1)sin(n+1)x+I_(n-2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

If I_(n)= int(sin nx)/(cos x)dx , then I_(n)=

int(cosx)/(cosx-sinx)dx=

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

If I_(n)= int (e^(ax))dx/(x^(n)) , then I_(n)=

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(n)=int (t^(n))/(1+t^(2))dt, then I_(n-2)=