Home
Class 12
MATHS
For any integer n le 2 let I(n)= int x d...

For any integer `n le 2` let `I_(n)= int x dx`. If `I_(n)=(1)/(a)tan^(n-1)x-bl_(a-2)` for `n ge 2`, then ordered pair (a,b) =

A

`(n-1,(n-2)/(n+1))`

B

`(n,1)`

C

`(n-1,1)`

D

`(n-1 (n-1)/(n-2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

For any integer n ge 2 , let I_(n) = int tan^(n) xdx . If I_(n) =1/a tan^(n-1)x - bI_(n-2) for n ge 2 , then the ordered pair (a,b) equals to

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(n) = int sin^(n)x dx , then nI_(n)-(n-1)I_(n-2)=

If I_(n)= int(sin nx)/(cos x)dx , then I_(n)=

For n ge 2 , If I_(n) =int sec^(n) xdx," then "I_(4) -(2)/(3) I_(2) =

For any integer n ge 1 , then sum_(k=1)^(n) k ( k+2) is equal to

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)