Home
Class 12
MATHS
int tan^(6) xdx=...

`int tan^(6) xdx=`

A

`(tan^(5)x)/(5)-(tanx^(3)x)/(3)+tan x+x+c`

B

`(tan^(5)x)/(5)-(tanx^(3)x)/(3)+tan x-x+c`

C

`(tan^(5)x)/(5)-(tanx^(3)x)/(3)-tan x-x+c`

D

none

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int tanh^(2)xdx=

Evaluate int tan^(6) x dx

int tan^(4) x dx=

Evaluate int tan ^(6) x dx.

Evalute the following integrals int tan^(5) xdx

Assertion (A) : If I_(n) = int tan^(n) xdx then 5 (I_(4) + I_(6)) = tan^(5) x Reason (R) : int tan^(n) " xdx then " I_(n) = (tan^(n-1)x)/(n) -I_(n- 2) " where n " in N The correct answer is

Obtain reduction formula for l_(n)=inttan^(n)xdx , n being a positive integer n le 2 and deduce the value of int tan^(6)x dx .

For any integer n ge 2 , let I_(n) = int tan^(n) xdx . If I_(n) =1/a tan^(n-1)x - bI_(n-2) for n ge 2 , then the ordered pair (a,b) equals to

int cos^(3) xdx=

int sin^(-1)xdx=