Home
Class 12
MATHS
int cot^(7)xdx=...

`int cot^(7)xdx=`

A

`-(cot^(6)x)/(6)+(cot^(4)x)/(4)-(cot^(2)x)/(2)-log|sinx|c`

B

`(cot^(6)x)/(6)+(cot^(4)x)/(4)-(cot^(2)x)/(2)-log|sinx|c`

C

`-(cot^(6)x)/(6)-(cot^(4)x)/(4)-(cot^(2)x)/(2)-log|sinx|c`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-1)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-2)|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int cot ^(2)x dx=

Evaluate int cot^(4) xdx

int cos^(3) xdx=

Find the values of the following integrals int cot^(2)x dx

int Cot^(-1)x dx=

int tanh^(2)xdx=

int tan^(6) xdx=

If I_(n) = int Cot^(n) xdx then I_(4) + I_(6) =