Home
Class 12
MATHS
The tangent & normal at a point on x^2/a...

The tangent & normal at a point on `x^2/a^2-y^2/b^2=1` cut the y-axis respectively at A & B. Prove that circle on AB as diameter passes through the focii of the hyperbola.

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-I)|4 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-2 (Level-II)|5 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos

Similar Questions

Explore conceptually related problems

The tangent and normal at any point P of an ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 cut its major axis in point Q and R respectively. If QR=a prove that the eccentric angle of the point P is given by e^(2)cos^(2)phi+cosphi-1=0

The line 3x+6y=k intersects the curve 2x^(2)+3y^(2)=1 at points A and B .The circle on AB as diameter passes through the origin. Then the value of k^(2) is

If a tangent to the ellipse x^2 + 4y^2 = 4 meets the tangents at the extremities of its major axis at B and C, then the circle with BC as diameter passes through the point :

Tangents at any point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 cut the axes at A and B respectively,If the rectangle at OAPB (where O is origin) is completed then locus of point P is given by

The tangent at a point P on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 passes through the point (0,-b) and the normal at P passes through the point (2a sqrt(2),0). Then the eccentricity of the hyperbola is 2( b) sqrt(2)(c)3(d)sqrt(3)

A tangent to the ellipse 4x^(2)+9y^(2)=36 is cut by the tangent at the extremities of the major axis at T and T^(1), the circle on TT^(1) as diameter passes through the point

The tangent and normal at the point p(18, 12) of the parabola y^(2)=8x intersects the x-axis at the point A and B respectively. The equation of the circle through P, A and B is given by

MOTION-HYPERBOLA-EXERCISE-3
  1. Find the equation of the tagent to the hyperbola x^(2)-4y^(2)=36 which...

    Text Solution

    |

  2. Tangents are drawn to the hyperbola 3x^2-2y^2=25 from the point (0,5/2...

    Text Solution

    |

  3. nd are inclined at avgicsTangents are drawn from the point (alpha, bet...

    Text Solution

    |

  4. Let 'p' be the perpendicular distance from the centre C of the hyperbo...

    Text Solution

    |

  5. The tangent & normal at a point on x^2/a^2-y^2/b^2=1 cut the y-axis re...

    Text Solution

    |

  6. Find the locus of the foot of perpendicular from the centre upon any ...

    Text Solution

    |

  7. If the normal at a pont P to the hyperbola x^2/a^2 - y^2/b^2 =1 meets ...

    Text Solution

    |

  8. The normla to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 drawn at an extr...

    Text Solution

    |

  9. Find the equations of the tangents to the hyperbola x^2=9y^2=9 that ar...

    Text Solution

    |

  10. An ellipse and a hyperbola have their principal axes along the coor...

    Text Solution

    |

  11. An ellipse has eccentricity 1/2 and one focus at the point P(1/2,1)....

    Text Solution

    |

  12. Prove that the part of the tangent at any point of the hyperbola (x^2)...

    Text Solution

    |

  13. Find the length of the diameter of the ellipse x^(2)/(25)+y^(2)/(9)=1 ...

    Text Solution

    |

  14. The tangent at P on the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 meets one ...

    Text Solution

    |

  15. From any point of the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1, tangents a...

    Text Solution

    |

  16. If two points P & Q on the hyperbola ,x^2/a^2-y^2/b^2=1 whose centre i...

    Text Solution

    |

  17. The asymptotes of a hyperbola are parallel to lines 2x+3y=0 and 3x+2y=...

    Text Solution

    |

  18. If a hyperbola passing through the origin has 3x-4y-1=0 and 4x-3y-6=0 ...

    Text Solution

    |

  19. The tangent at any point of a hyperbola 16x^(2) – 25y^(2) = 400 cuts o...

    Text Solution

    |

  20. Text Solution

    |