Home
Class 12
MATHS
The normla to the hyperbola (x^2)/(a^2)-...

The normla to the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` drawn at an extremity of its latus rectum is parallel to an asymptote. Show that the eccentricity is equal to the square root of `(1+sqrt(5))//2.`

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-I)|4 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-2 (Level-II)|5 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos

Similar Questions

Explore conceptually related problems

If normal to hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 drawn at an extremity of its latus-rectum has slope equal to the slope of line which meets hyperbola only once,then the eccentricity of hyperbola is

The normal drawn to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at the extremity of the latus rectum passes through the extremity of the minor axis.Eccentricity of this ellipse is equal

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

If the latus rectum of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=1 is (9)/(2) , then its eccentricity, is

The hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 passes through the point (4,2) and the length of its latus rectum is (4)/(3) the angle between its asymptotes is

The length of the latus rectum of the hyperbola 3x ^(2) -y ^(2) =4 is

The eccentricity of the hyperbola (sqrt(1999))/(3)(x^(2)-y^(2))=1 , is

If the normal at an end of a latus-rectum of an ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 passes through one extremity of the minor axis, show that the eccentricity of the ellipse is given by e = sqrt((sqrt5-1)/2)

MOTION-HYPERBOLA-EXERCISE-3
  1. Find the equation of the tagent to the hyperbola x^(2)-4y^(2)=36 which...

    Text Solution

    |

  2. Tangents are drawn to the hyperbola 3x^2-2y^2=25 from the point (0,5/2...

    Text Solution

    |

  3. nd are inclined at avgicsTangents are drawn from the point (alpha, bet...

    Text Solution

    |

  4. Let 'p' be the perpendicular distance from the centre C of the hyperbo...

    Text Solution

    |

  5. The tangent & normal at a point on x^2/a^2-y^2/b^2=1 cut the y-axis re...

    Text Solution

    |

  6. Find the locus of the foot of perpendicular from the centre upon any ...

    Text Solution

    |

  7. If the normal at a pont P to the hyperbola x^2/a^2 - y^2/b^2 =1 meets ...

    Text Solution

    |

  8. The normla to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 drawn at an extr...

    Text Solution

    |

  9. Find the equations of the tangents to the hyperbola x^2=9y^2=9 that ar...

    Text Solution

    |

  10. An ellipse and a hyperbola have their principal axes along the coor...

    Text Solution

    |

  11. An ellipse has eccentricity 1/2 and one focus at the point P(1/2,1)....

    Text Solution

    |

  12. Prove that the part of the tangent at any point of the hyperbola (x^2)...

    Text Solution

    |

  13. Find the length of the diameter of the ellipse x^(2)/(25)+y^(2)/(9)=1 ...

    Text Solution

    |

  14. The tangent at P on the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 meets one ...

    Text Solution

    |

  15. From any point of the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1, tangents a...

    Text Solution

    |

  16. If two points P & Q on the hyperbola ,x^2/a^2-y^2/b^2=1 whose centre i...

    Text Solution

    |

  17. The asymptotes of a hyperbola are parallel to lines 2x+3y=0 and 3x+2y=...

    Text Solution

    |

  18. If a hyperbola passing through the origin has 3x-4y-1=0 and 4x-3y-6=0 ...

    Text Solution

    |

  19. The tangent at any point of a hyperbola 16x^(2) – 25y^(2) = 400 cuts o...

    Text Solution

    |

  20. Text Solution

    |