Home
Class 12
MATHS
lim(x->a-) {(|x|^3)/a-[x/a]^3} ,(a < 0),...

`lim(x->a_-) {(|x|^3)/a-[x/a]^3} ,(a < 0)`, where `[x]` denotes the greatest integer less than or equal to `x` is equal to:

A

`a^(2) -3`

B

` a^(2) - 1`

C

`a^(2)`

D

None

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -1|48 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

lim(x rarr a_(-)){(|x|^(3))/(a)-[(x)/(a)]^(3)},(a<0) where [x] denotes the greatest integer less than or equal to x is equal to:

lim_(x->0) (x^3-3x+1)/(x-1)

lim_(x rarr3)(|x-3|)/(x-3)=

lim_(x-> 3) ((x^4 -81)/(x-3)) = ?

Evaluate: lim_(x rarr 3) (|x-3|)/(x-3) .

lim_(x rarr3^(-))(x-[x])/(x-3)

lim_(x rarr3)x+3

lim_(x rarr1)(|x^(3)-x|)/(x-x^(3))3lim

If lim_(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim_(x to 3) (x^(3) - 27)/(x - 3) , find the value of a.

lim_ (x rarr1) (x-3) / (x ^ (2) + 2x-4) = (lim_ (x rarr1) (x-3)) / (lim_ (x rarr1) (x ^ (2) + 2x -4))