Home
Class 12
MATHS
lim(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^...

`lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N,` is equal to

A

0

B

`ln ( 2//3)`

C

`ln ( 3//2) z `

D

none

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -1|48 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a)logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

lim_(x rarr oo)((2^(x^(n)))^(e^((1)/(T)))-(3^(x^(n)))^((1)/(e^(bar(T)))))/(x^(n))

The value of lim_(x rarr oo)((2^(x^(n)))^((1)/(e^(x)))-(3^(x^(n)))^((1)/(e^(x))))/(x^(n))

lim_ (x rarr oo) (e ^ (x) sin ((x ^ (n)) / (e ^ (x)))) / (x ^ (n))

The value of lim_(x rarr oo)(x^(n))/(e^(x))

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

lim_(x rarr oo)(1-x+x*e^((1)/(n)))^(n)

If lim_(x rarr(oo) (1+(1)/(x(x+2)))^(x^(2))(1+(1)/(x(x+4)))^(-x^(2)) is equal to e^(n) then n is equal to

sum_(n=0)^(oo)((log_(e)x)^(n))/(n!) is equal to