Home
Class 12
MATHS
Let a = min{x^(2) +2x + 3, x in R ) & b...

Let `a = min{x^(2) +2x + 3, x in R ) ` & `b underset( theta rarr 0 ) ( "lim")( 1- cos theta)/( theta^(2))`. The value of `underset( r= 0 )overset( n ) ( sum ) a^(r) b^(n-r) ` is

A

`(2^(n+1) -1)/( 3.2^(n))`

B

`(2^(n+1) +1)/( 3.2^(n))`

C

`(4^(n+1) -1)/( 3.2^(n))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -1|48 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

underset( x rarr 0 ) ("lim") ( cos mx )^(n//x^(2))

Let a=min{x^(2)+2x+3,x in R} and b=lim_(theta rarr0)(1-cos theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)*b^(n-r) is :

Let a=min{x^(2)+2x+3,x in R} and b=lim_(theta rarr0)(1-cos theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)*b^(n-r) is :

If a=min(x^(2)+4x+5,x in R) and b=lim_(theta rarr0)(1-cos2 theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)b^(n-r) is

underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1) is equal to

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

underset( x rarr 0 ) ( "lim")( x tan 2x - 2x ta n x )/(( 1- cos 2x)^(2)) is

If l = underset( x rarr 0) ("Lim")( x ( 1+ a cos x ) - bsin x ) /( x^(3))= underset( x rarr 0 ) ("Lim") ( 1+a cos x ) /( x^(2))- underset( x rarr 0 ) ("lim")( b sin x )/( x^(3)) , where l in R , then