Home
Class 12
MATHS
Let alpha and beta be the distinct roots...

Let `alpha` and `beta` be the distinct roots of `ax^(2) + bx + c = 0` then `underset(x to alpha)(Lt) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2))` equal to

A

`(1)/( 2) ( alpha- beta)^(2)`

B

`- ( a^(2))/(2) ( alpha- beta)^(2)`

C

0

D

`(a^(2))/( 2) ( alpha- beta)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -1|48 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to

let alpha and beta be the roots of ax^(2)+bx+c then fin the value of (1)/(alpha)-(1)/(beta)

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to