Home
Class 12
MATHS
underset( x rarroo)("lim") x {tan^(-1) (...

`underset( x rarroo)("lim") x {tan^(-1) ((x+1)/( x+2))-pi //4}= `

A

`-1`

B

`-1//2`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -1|48 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

underset( x rarroo ) ("lim") sec^(-1) ((x)/( x+1)) =

underset( x rarr 1 ) ("lim") (1-x)/( 1-x^(2))=

lim_ (x rarr oo) x {tan ^ (- 1) ((x + 1) / (x + 2)) - (pi) / (4)} =

Evaluate underset( x rarr oo) ( "lim") ( pi - 2 tan^(-1) x ) ln x

underset( x rarr pi //2) ("Lim") ( 2 ^(cos x) - 1)/( x ( x-pi //2))= is

lim_ (x rarr oo) 4x ((pi) / (4) -tan ^ (- 1) ((x + 1) / (x + 2))) = y ^ (2) + 4y + 5

underset( x rarr oo)("Lim")[cos (2pi ((x)/(1+ x ))^(a))]^(x^(2))a in Q

underset( x rarr 1) ( "Lim") ( tan "" ( pi x)/( 4))^(tan""( pix)/( 2))

lim_ (x rarr0) (1) / (x) [tan ^ (- 1) ((x + 1) / (2x + 1)) - (pi) / (4)] =?

Find underset(x rarrpi //4) (" lim") ( ln tan x )/( 1- cot x )