Home
Class 12
MATHS
underset(n rarr oo) ( "lim")( 0.2)^(log...

`underset(n rarr oo) ( "lim")( 0.2)^(log_sqrt(5) (1//4+1//8+ 1//16+"............."n" terms" ))` is equal to `:`

A

2

B

4

C

8

D

None

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -1|48 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

underset( n rarr oo) ( "Lim") ( -3n + (-1)^(n))/(4n-(-1)^(n)) is

lim_(nrarroo)((1)/(5))^((log_(sqrt5)((1)/(4)+(1)/(8)+(1)/(16)+……."n terms")) equals

lim_ (n rarr oo) (sqrt (n ^ (4) +1) -sqrt (n ^ (4) -1))

Find underset( n rarr oo) ("lim") (sqrt( n^(2) + 1)+ sqrt( n ) )/( sqrt( n ^(2) + 1)- sqrt( n ) )

Find underset( n rarr oo )("lim") ( ( 2 n^(3))/( 2n^(2) + 3)- ( 1+ 5n^(2) )/( 5n + 1))

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_ (n rarr oo) sin [pi (sqrt (n ^ (2) +1)] is equal to:

lim_ (n rarr oo) ((n!) ^ ((1) / (n))) / (n) equals