Home
Class 12
MATHS
underset( x rarr 0 ) ( "lim")((1+sin x )...

`underset( x rarr 0 ) ( "lim")((1+sin x )/( 1- sin x ))^("cosec x ")` is equal to `:`

A

e

B

1

C

`e^(2)`

D

None

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -1|48 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

Find underset( x rarr 0 ) ( "Lim") ( e^(sin x) -sin x -1)/( x^(2))

Find underset( x rarr0 ) ( "Lim") ( tan x - sin x )/( x^(3))

Find underset( x rarr 0 ) ( "Lim") ( e^(sinx) -sin x -1)/( x^(2))

Evaluate underset( x rarr0 ) ( "Lim") ( 3 sin x - sin 3x)/( x- sin x )

lim_(x rarr0)(1+sin x)^(cos x) is equal to

lim_(x rarr0)(sin x)/(x(1+cos x)) is equal to

If l = underset( x rarr 0) ("Lim")( x ( 1+ a cos x ) - bsin x ) /( x^(3))= underset( x rarr 0 ) ("Lim") ( 1+a cos x ) /( x^(2))- underset( x rarr 0 ) ("lim")( b sin x )/( x^(3)) , where l in R , then

Evaluate underset( x rarr0 ) ( "Lim")( e^(x) - e^(-x)-2x)/( x - sin x )

lim_(x rarr0+)((sin x)^((1)/(x))+(cos x)^(1/x)+(cosec x)^(x)) is equal to