Home
Class 12
MATHS
If lim(x->0 )x^3/(sqrt(a+x) (bx-sinx)) =...

If `lim_(x->0 )x^3/(sqrt(a+x) (bx-sinx)) =1`, the the value of constants is

A

b =1 , a = 36

B

a= 1, b= 6

C

a= 1, b = 36

D

b= 1, a= 6

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -1|48 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

If lim_(x rarr0)(x^(3))/(sqrt(a+x)(bx-sin x))=1, the the value of constants is

If lim_(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0 , then a+b is equal to

lim_(x->0)|sinx|/x

If lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1 , then the value of ab is euqal to

If lim_(x to 0) (x^(3))/(sqrt(a + x) (bx - "sin"x)) = 1, a in R^(+) , then the value of a + b + 1975 is …..

Given that lim_(x to oo)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

lim_(x rarr0)sqrt((x+sinx)/(x-cosx))

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

If lim_(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3 then find the values of a and b.