Home
Class 12
MATHS
If l = underset( x rarr 0) ("Lim")( x ...

If `l = underset( x rarr 0) ("Lim")( x ( 1+ a cos x ) - bsin x ) /( x^(3))= underset( x rarr 0 ) ("Lim") ( 1+a cos x ) /( x^(2))- underset( x rarr 0 ) ("lim")( b sin x )/( x^(3))` , where ` l in R `, then

A

` ( a, b ) = ( -1,0)`

B

a & b are nay real numbers

C

l = 0

D

`l = ( 1)/( 2)`

Text Solution

Verified by Experts

The correct Answer is:
A,D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • LIMIT

    MOTION|Exercise EXERCISE -2( LEVEL-I)|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

underset( x rarr 0 ) ("lim") ( cos mx )^(n//x^(2))

underset( x rarr 0 ) ( "Lim") ((x- 1+ cos x )/( x))^((1)/( x))

Find underset( x rarr0 ) ( "Lim") ( tan x - sin x )/( x^(3))

Find underset( x rarr 0 ) ( "Lim") ( e^(sin x) -sin x -1)/( x^(2))

If underset( x rarr 0 ) ("Lim") ( sin 2x + a sinx )/( x^(3)) = p ( finite ) , then

Find underset( x rarr 0 ) ( "Lim") ( e^(sinx) -sin x -1)/( x^(2))

Evaluate underset( x rarr0 ) ( "Lim") ( 3 sin x - sin 3x)/( x- sin x )

underset( x rarr 0 ) ( "lim")( x tan 2x - 2x ta n x )/(( 1- cos 2x)^(2)) is

lim_(x rarr0)(x(1+a cos x)-b sin x)/(x^(3))=1 then

underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) is equal to :