Home
Class 12
MATHS
Find the constants 'a' (a > 0) and 'b' ...

Find the constants `'a' (a > 0) and 'b'` such that, `lim_(x->0)(int_0^x(t^2 \ dt)/(sqrt(a+t)))/(b x-sinx)=1` has `0/0` form using L'Hopital Rule.

Promotional Banner

Topper's Solved these Questions

  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 1|27 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 2 (LEVEL-I)|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 4 ( Level-II ) Previous Year (Paragraph)|2 Videos

Similar Questions

Explore conceptually related problems

Find the constants 'a'(a>0) and 'b' such that,lim_(x rarr0)(int_(0)^(x)(t^(2)dt)/(sqrt(a+t)))/(bx-sin x)=1 has (0)/(0) form using L'Hopital Rule.

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

Given that lim_(x to oo)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

If lim_(xrarr0)(int_(0)^(x^2)(cos^2t)dt)/(xsinx)

Evaluate: lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)

Evaluate :lim_(x rarr0)(int_(0)^(x^(2))sin sqrt(t)dt)/(x^(3))

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is