Home
Class 12
MATHS
If x=log(1+t^(2)),y=2t-2tan^(-1)t, the...

If `x=log(1+t^(2)),y=2t-2tan^(-1)t,`
then at t = `1(d^(2)y)/(dx^(2))` equals-

Promotional Banner

Topper's Solved these Questions

  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 1|27 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 2 (LEVEL-I)|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 4 ( Level-II ) Previous Year (Paragraph)|2 Videos

Similar Questions

Explore conceptually related problems

If x=log(1+t^(2)),y=t-tan^(-1)t , show that (dy)/(dx)=sqrt(e^(x)-1)/(2)

If y=log(1+2t^(2)+t^(4)),x=tan^(-1)t," find "(d^(2)y)/(dx^(2)) .

If x=logt and y=t^(2)-1 , then what is (d^(2)y)/(dx^(2)) at t = 1 equal to?

If x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx is equal to

If x=t+(1)/(t),y=t-(1)/(t)," where "tne0," then: "(d^(2)y)/(dx^(2))=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If y = int_(0)^(x^(2))ln(1+t) , then find (d^(2)y)/(dx^(2))

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)