Home
Class 12
MATHS
The differential cofficient of a^(sin^(-...

The differential cofficient of `a^(sin^(-1)x)w.r.t sin^(-1)x` is -

A

`a^(sin^(-1)x)log_(e)a`

B

`a^(tan^(-1))x`

C

`(a^(tan^(-1))x)/(sqrt(1-x^(2))`

D

`a^(sin^(-1))sqrt((1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of \( a^{\sin^{-1} x} \) with respect to \( \sin^{-1} x \), we can follow these steps: ### Step 1: Define the Functions Let: - \( f(x) = a^{\sin^{-1} x} \) - \( g(x) = \sin^{-1} x \) We want to find \( \frac{f'(x)}{g'(x)} \). ### Step 2: Differentiate \( f(x) \) To differentiate \( f(x) = a^{\sin^{-1} x} \), we can use logarithmic differentiation. Taking the natural logarithm of both sides gives: \[ \ln f(x) = \sin^{-1} x \cdot \ln a \] Now, differentiate both sides with respect to \( x \): \[ \frac{1}{f(x)} f'(x) = \frac{d}{dx}(\sin^{-1} x) \cdot \ln a \] Using the derivative of \( \sin^{-1} x \): \[ \frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \] So we have: \[ \frac{1}{f(x)} f'(x) = \frac{\ln a}{\sqrt{1 - x^2}} \] Multiplying both sides by \( f(x) \): \[ f'(x) = a^{\sin^{-1} x} \cdot \frac{\ln a}{\sqrt{1 - x^2}} \] ### Step 3: Differentiate \( g(x) \) Now, differentiate \( g(x) = \sin^{-1} x \): \[ g'(x) = \frac{1}{\sqrt{1 - x^2}} \] ### Step 4: Find \( \frac{f'(x)}{g'(x)} \) Now we can find the ratio of the derivatives: \[ \frac{f'(x)}{g'(x)} = \frac{a^{\sin^{-1} x} \cdot \frac{\ln a}{\sqrt{1 - x^2}}}{\frac{1}{\sqrt{1 - x^2}}} \] The \( \sqrt{1 - x^2} \) terms cancel out: \[ \frac{f'(x)}{g'(x)} = a^{\sin^{-1} x} \cdot \ln a \] ### Final Result Thus, the differential coefficient of \( a^{\sin^{-1} x} \) with respect to \( \sin^{-1} x \) is: \[ \boxed{a^{\sin^{-1} x} \cdot \ln a} \]
Promotional Banner

Topper's Solved these Questions

  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 2 (LEVEL-I)|17 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 2 (LEVEL-II)|13 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 4 ( Level-II ) Previous Year (Paragraph)|2 Videos

Similar Questions

Explore conceptually related problems

Differential coefficient of e^sin^((-1)x) w.r.t. e^-cos^((-1)x) is independent of x . ( T or F )

Differential coefficient of sin^(-1)x w.r.t. cos^(-1)sqrt(1-x^2) is equal to......

The differential coefficient of tan^(-1)((2x)/(1-x^2)) w.r.t. sin^(-1)((2x)/(1+x^2)) is equal to.........

Differentiate x^(sin^(-1)x) w.r.t. sin^(-1)x

DIfferential coefficient of tan^-1(x/(1+sqrt(1-x^2)))w.r.t sin^-1x is

Differential coefficient of sin^(-1)((1-x)/(1+x)) w.r.t sqrt(x) is

The differential cofficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is-

Differentiate sin^(-1)x w.r.t. tan^(-1)x .

Differentiate x^(sin^(-1)x) w.r.t. x.

Differentiate e^(sin^(-1)x) , w.r.t. x.

MOTION-METHOD OF DIFFERENTIATION-EXERCISE - 1
  1. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  2. If y=sin^(-1)((x^2-1)/(x^2+1))+sec^(-1)((x^2+1)/(x^2-1)) then dy/dx is...

    Text Solution

    |

  3. Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))...

    Text Solution

    |

  4. If y = sin^-1((2x)/(1+x^2)) then (dy)/(dx) at x=-2is

    Text Solution

    |

  5. If y=x-x^2, then the derivative of y^2 w.r.t x^2 is

    Text Solution

    |

  6. The differential cofficient of a^(sin^(-1)x)w.r.t sin^(-1)x is -

    Text Solution

    |

  7. The value of derivative of tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2)))w.r...

    Text Solution

    |

  8. If x=e^(y+e^(y^(+..."to"00))),xgt0,"then"(dy)/(dx)

    Text Solution

    |

  9. If y=sqrt(x)^(sqrt(x)^(sqrt(x)^sqrt(x)...00)), "then the value of"(dy)...

    Text Solution

    |

  10. If y=sqrt(logx+sqrt(logx+sqrtlogx+......oo)), " then " dy/dx is

    Text Solution

    |

  11. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |

  12. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  13. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  14. LEt f(x) be a differentiable function and f'(4)=5. Then, lim(x->2)(f(4...

    Text Solution

    |

  15. If u=a x+b ,t h e n(d^n)/(dx^n)(f(a x+b)) is equal to (d^n)/(d u^n)(f(...

    Text Solution

    |

  16. Let f(x) be a polynomial in x . Then the second derivative of f(e^x)wd...

    Text Solution

    |

  17. If f(x), g(x), h(x) are polynomials in x of degree 2 If F(x)=|[f,g,h],...

    Text Solution

    |

  18. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  19. If x=(1+t)/(t^3),y=3/(2t^2)+2/t ,t h e nx((dy)/(dx))^3-(dy)/(dx) is eq...

    Text Solution

    |

  20. If x=a t^2,y=2a t , then (d^2y)/(dx^2) is equal to -1/(t^2) (b) 1/(2a...

    Text Solution

    |