Home
Class 12
MATHS
If y = a cos (ln x)+ b sin (ln x), then ...

If `y = a cos (ln x)+ b sin (ln x)`, then `x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=`

A

0

B

y

C

`-y`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( y = a \cos(\ln x) + b \sin(\ln x) \) and then evaluate the expression \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} \). ### Step 1: Differentiate \( y \) with respect to \( x \) Given: \[ y = a \cos(\ln x) + b \sin(\ln x) \] Using the chain rule, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx}[a \cos(\ln x)] + \frac{d}{dx}[b \sin(\ln x)] \] Using the derivative of \( \cos(u) \) and \( \sin(u) \) where \( u = \ln x \): \[ \frac{dy}{dx} = -a \sin(\ln x) \cdot \frac{1}{x} + b \cos(\ln x) \cdot \frac{1}{x} \] \[ \frac{dy}{dx} = \frac{1}{x}(-a \sin(\ln x) + b \cos(\ln x)) \] ### Step 2: Multiply \( \frac{dy}{dx} \) by \( x \) Now we compute \( x \frac{dy}{dx} \): \[ x \frac{dy}{dx} = x \cdot \frac{1}{x}(-a \sin(\ln x) + b \cos(\ln x)) = -a \sin(\ln x) + b \cos(\ln x) \] ### Step 3: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \) again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{x}(-a \sin(\ln x) + b \cos(\ln x))\right) \] Using the product rule: \[ \frac{d^2y}{dx^2} = -\frac{1}{x^2}(-a \sin(\ln x) + b \cos(\ln x)) + \frac{1}{x} \left(-a \cos(\ln x) \cdot \frac{1}{x} + b (-\sin(\ln x) \cdot \frac{1}{x})\right) \] \[ = -\frac{1}{x^2}(-a \sin(\ln x) + b \cos(\ln x)) + \frac{1}{x^2}(-a \cos(\ln x) - b \sin(\ln x)) \] Combining the terms: \[ \frac{d^2y}{dx^2} = \frac{1}{x^2} \left( a \sin(\ln x) - b \cos(\ln x) - a \cos(\ln x) - b \sin(\ln x) \right) \] \[ = \frac{1}{x^2} \left( (a - b) \sin(\ln x) - (a + b) \cos(\ln x) \right) \] ### Step 4: Compute \( x^2 \frac{d^2y}{dx^2} \) Now, we compute \( x^2 \frac{d^2y}{dx^2} \): \[ x^2 \frac{d^2y}{dx^2} = (a - b) \sin(\ln x) - (a + b) \cos(\ln x) \] ### Step 5: Combine \( x^2 \frac{d^2y}{dx^2} \) and \( x \frac{dy}{dx} \) Now we add \( x^2 \frac{d^2y}{dx^2} \) and \( x \frac{dy}{dx} \): \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = \left[(a - b) \sin(\ln x) - (a + b) \cos(\ln x)\right] + \left[-a \sin(\ln x) + b \cos(\ln x)\right] \] Combining these: \[ = (a - b - a) \sin(\ln x) + (- (a + b) + b) \cos(\ln x) \] \[ = -b \sin(\ln x) - a \cos(\ln x) \] ### Final Result Thus, we find that: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -y \]
Promotional Banner

Topper's Solved these Questions

  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 2 (LEVEL-II)|13 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 3|25 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 1|27 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 4 ( Level-II ) Previous Year (Paragraph)|2 Videos

Similar Questions

Explore conceptually related problems

If y =3 cos (log x) + 4 sin (log x), then x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y=A cos(log x)+B sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=a cos(log x)+sin(log x), prove that (x^(2)d^(2))/(dx^(2))+x(dy)/(dx)+y=0

If y=3cos(log x)+4sin(log x), then show that x^(2)*(d^(2)y)/(dx^(2))+(dy)/(dx)+y=0

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

Prove that the differential equation for a cos(log x)+b sin(log x) is x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

MOTION-METHOD OF DIFFERENTIATION-EXERCISE - 2 (LEVEL-I)
  1. If g is the inverse of f and f'(x)=1/(2+x^n), then g'(x) is equal to

    Text Solution

    |

  2. Derivative of log(log|sinx|) with respect to x at x=(pi)/(6) is

    Text Solution

    |

  3. If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), then (dy)/(dx) equals

    Text Solution

    |

  4. If x^(3)cos(xy) + y^(3)sin(xy) + 1 = 0 "then" (dy)/(dx) equals

    Text Solution

    |

  5. If y=2^(log)2x^((2x))+(tan(pix)/4)^(4/(pix)) then ((dy)/(dx)])(x=1) is...

    Text Solution

    |

  6. If x^m y^n=(x+y)^(m+n), then (dy)/(dx) is (x+y)/(x y) (b) x y (c) x/...

    Text Solution

    |

  7. d//dx[tan^(-1)((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))^(1//2)]

    Text Solution

    |

  8. d//dx[sin^(2)cot^(-1)""(1)/(sqrt((1+x)/(1-x)))] , is equal to -

    Text Solution

    |

  9. If x=e^(sin^(- 1^t), y=tan^(- 1)t, then (dy)/(dx)

    Text Solution

    |

  10. Find the derivative of f(tanx)wdotrdottg(secx)a tx=pi/4, where f^(prim...

    Text Solution

    |

  11. The derivative of the function, f(x)=cos^(-1){(1)/(sqrt(13))(2cosx-3...

    Text Solution

    |

  12. If y=sqrt(x+sqrt(y+sqrt(x+......,)))"then"(dy)/(dx)=

    Text Solution

    |

  13. If f(x) = f(x) + f'(x) + f'''(x) ……..oo also f(0) = 1 and f(x) is a di...

    Text Solution

    |

  14. If y = a cos (ln x)+ b sin (ln x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/...

    Text Solution

    |

  15. If y = sin mx then the value of |[y,y1,y2],[y3,y4,y5],[y6,y5,y7]| wher...

    Text Solution

    |

  16. If x=(1+t)/(t^3),y=3/(2t^2)+2/t ,t h e nx((dy)/(dx))^3-(dy)/(dx) is eq...

    Text Solution

    |

  17. If sinx =(2t)/(1+t^2) and cot y =(1-t^2)/(2t) then the value of (d^2 x...

    Text Solution

    |