Home
Class 12
MATHS
int(dx)/(sin^2xcos^2x) equals (A) tanx+...

`int(dx)/(sin^2xcos^2x)` equals
(A) `tanx+cotx+C`
(B) `tanx-cotx+C`
(C) `tanxcotx+C`
(D) `tanx-cot2x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sin^2 x \cos^2 x} \), we can start by rewriting the integrand using trigonometric identities. ### Step 1: Rewrite the integrand We know that: \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \] Thus, we can rewrite the integral as: \[ \int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{4 \, dx}{\sin^2(2x)} \] ### Step 2: Use the cosecant identity Using the identity \( \csc^2(2x) = \frac{1}{\sin^2(2x)} \), we can rewrite the integral: \[ \int \frac{4 \, dx}{\sin^2(2x)} = 4 \int \csc^2(2x) \, dx \] ### Step 3: Integrate using the known integral The integral of \( \csc^2(kx) \) is known to be: \[ \int \csc^2(kx) \, dx = -\frac{1}{k} \cot(kx) + C \] In our case, \( k = 2 \): \[ 4 \int \csc^2(2x) \, dx = 4 \left(-\frac{1}{2} \cot(2x) + C\right) = -2 \cot(2x) + C \] ### Final Result Thus, the final result of the integral is: \[ \int \frac{dx}{\sin^2 x \cos^2 x} = -2 \cot(2x) + C \] ### Conclusion The correct option is not listed among the choices provided. However, if we consider the relationship between \( \tan \) and \( \cot \), we can express \( -2 \cot(2x) \) in terms of \( \tan \) and \( \cot \) functions, but it does not match any of the options directly.

To solve the integral \( \int \frac{dx}{\sin^2 x \cos^2 x} \), we can start by rewriting the integrand using trigonometric identities. ### Step 1: Rewrite the integrand We know that: \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int(sin^2x-cos^2x)/(sin^2cos^2x)dx is equal to (A) tanx+cotx+c (B) tanx+cose c""x+c (C) -tanx+cot""x+c (D) tanx+sec""x+c

int (sin^6x + cos^6x)/(sin^2 x*cos^2x) dx (i) tanx+ cotx+3x+C (ii) tanx+ cotx-3x+C (iii)tanx-cotx-3x+C (iv)tanx-cotx+3x+C

(tanx-cotx)^(2)

2tanx-cotx+1=0

int(sin^3x+cos^3x)/(sin^2xcos^2x)dx (A) sinx+cosx+c (B) tanx+cotx+c (C) secx-cosecx+c (D) sinx-cosx+c

int(1)/(tanx+cotx)dx=

int(tanx+cotx)^2dx

If tanx= 3cotx " then " x=?

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

int(dx)/(tanx+cotx+secx+cos e c x)=