Home
Class 12
MATHS
int(10 x^9+10 ^xlog(e^(10))dx)/(x^(10)+1...

`int(10 x^9+10 ^xlog_(e^(10))dx)/(x^(10)+10^x)`equals

A

`10^x-x^(10)+C`

B

`10^x+x^(10)+C`

C

`(10^x-x^(10))^(-1)+C`

D

`log(10^x+x^(10))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{10x^9 + 10^x \log_{e}(10)}{x^{10} + 10^x} \, dx, \] we will use substitution and properties of logarithms. ### Step-by-Step Solution: 1. **Identify the substitution**: Let \( t = x^{10} + 10^x \). 2. **Differentiate the substitution**: We need to find \( dt \): \[ dt = \frac{d}{dx}(x^{10} + 10^x) = 10x^9 + 10^x \log_{e}(10) \, dx. \] 3. **Rearranging for \( dx \)**: From the expression for \( dt \), we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{10x^9 + 10^x \log_{e}(10)}. \] 4. **Substituting in the integral**: Now substitute \( t \) and \( dx \) into the integral: \[ \int \frac{10x^9 + 10^x \log_{e}(10)}{x^{10} + 10^x} \, dx = \int \frac{dt}{t}. \] 5. **Integrate**: The integral of \( \frac{1}{t} \) is: \[ \int \frac{dt}{t} = \log |t| + C. \] 6. **Back-substitute for \( t \)**: Replace \( t \) back with \( x^{10} + 10^x \): \[ \log |x^{10} + 10^x| + C. \] ### Final Answer: Thus, the solution to the integral is: \[ \log |x^{10} + 10^x| + C. \]

To solve the integral \[ \int \frac{10x^9 + 10^x \log_{e}(10)}{x^{10} + 10^x} \, dx, \] we will use substitution and properties of logarithms. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int_(4)^(10)(dx)/(x)

int_(0)^(10)(dx)/(x^(2)+1)

int(10x^(9)+10^(x)log_(e)10)/(10^(x)+x^(10))dx=

Evaluate: int(10x^(9)+10^(x)log_(e)10)/(10^(x)+x^(10))dx

Evaluate: (i) int(10x^(9)+10^(x)(log)_(e)10)/(10^(x)+x^(10))dx (ii) int(1-sin2x)/(x+cos^(2)x)dx

int_(0)^(10)(x^(10))/((10-x)^(10)+x^(10))dx=

int(dx)/(9x^(2)+6x+10)

int x^10-1/x-1 dx